
INTEGRATION, the VLSI journal 87 (2022) 194–204

Available online 4 July 2022
0167-9260/© 2022 Elsevier B.V. All rights reserved.

Compact MAX and MIN Stochastic Computing architectures

Paul P. Sotiriadis , Nikos Temenos *

Department of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece

A R T I C L E I N F O

Keywords:
Stochastic Computing
Stochastic MAX
Stochastic MIN
Unconventional computing

A B S T R A C T

In this work we present Stochastic Computing MAX and MIN architectures. Their operation relies on an accu-
mulator to store the signed-bit differences between their two stochastic input sequences without additional
randomization. This counting process makes their operation deterministic, resulting in an improved latency-
accuracy trade-off when compared to existing Stochastic Computing MAX and MIN architectures. Modeling
the architectures as Markov Chains allows for an in-depth analysis of their stochastic operation, derivation of
their statistical properties and proof of their correct operation. An overflow/underflow Markov Chain model
allows for the analytic calculation of the register size they use, providing guidelines for its selection based on
accuracy requirements. The performance of the proposed architectures is compared to those of existing ones in
the Stochastic Computing literature in computational accuracy and hardware resources using MATLAB and
Synopsys Tools. Their effectiveness is demonstrated in two standard Digital Image Processing tasks; image
denoising with a 3 × 3 median filter and dimensionality reduction of an image with a 2 × 2 max pooling kernel.

1. Introduction

Efficient realization of digital systems in Integrated Circuits (ICs) and
Field Programmable Gate Arrays (FPGAs) is of primary interest due to
the accelerated growth of emerging applications [1–4]. Standard Digital
Signal Processing (DSP) cores are often stressed by the hardware-
demanding binary computing methods, especially when parallelization
is necessary [3,5–7]. To this end, research has shifted towards uncon-
ventional computing paradigms to overcome the binary computing’s
design constraints.

Stochastic Computing (SC) falls within the category of unconven-
tional computing techniques and is proven to be an effective approach
[3,6,8,9]. Deviating from the standard binary arithmetic representations
and processing, SC encodes numbers and signals probabilistically in the
form of stochastic sequences [10]. Therefore, its single-bit processing
allows for the realization of fundamental arithmetic operations as well
as highly-complex functions using only a few standard logic cells
[6,9,11,12]. Moreover, SC is inherently tolerant to soft-errors [6,10,13].

One of SC’s main challenges is the latency to accuracy trade-off
[8,14]. Given its bit-processing, increasing the computational cycles
results in increased accuracy of the processed sequences, at the cost,
however, of energy consumption [12]. Therefore, the increased
computational accuracy combined with low-latency is of primary design
concern in SC.

SC’s advantages favor applications with massive parallelism needs.
Neural Networks (NNs) [3,4,8,15–19] and Digital Image Processing
[20–22] are two of the many fields in which SC is successful, others
being soft-filtering & polynomial solving [23–28], error-correcting
codes [9,29], etc. With emphasis in NNs and Image Processing tasks,
necessary part of their processing cores includes non-linear functions,
which can be realized effectively in SC as stochastic Finite State Ma-
chines (FSMs). They are known to realize widely used functions such as
the tanh, the exponential, the linear-gain, the MAX & MIN and others
[16,20,21,30]. Among them, the MAX & MIN is the most popular one
[3], due to its importance in MAX pooling operations and in image
filtering kernels, such as the median.

Several MAX & MIN architectures have been investigated within the
context of SC [21,30–32]. The core of the approach in [21] is multi-
plexers (MUXs) and the stochastic tanh function, implemented as a FSM.
The selection of the FSM’s number of states is of critical importance as it
is one of the two factors determining the output accuracy, the other
being the sequence length. In [21], the FSM’s number of states resulting
in the highest computational accuracy are derived with numerical
simulations. Furthermore, one MUX requires a binary-to-stochastic
converter to generate its select signal, which is a hardware taxing
block, increasing the total area, power & energy consumption.

To reduce the hardware overhead in [21], the approach in [31],
replaces the binary-to-stochastic converter with an XOR gate, preserving

* Corresponding author.
E-mail address: ntemenos@gmail.com (N. Temenos).

Contents lists available at ScienceDirect

Integration

journal homepage: www.elsevier.com/locate/vlsi

https://doi.org/10.1016/j.vlsi.2022.06.006
Received 22 November 2021; Received in revised form 17 May 2022; Accepted 17 June 2022

mailto:ntemenos@gmail.com
www.sciencedirect.com/science/journal/01679260
https://www.elsevier.com/locate/vlsi
https://doi.org/10.1016/j.vlsi.2022.06.006
https://doi.org/10.1016/j.vlsi.2022.06.006
https://doi.org/10.1016/j.vlsi.2022.06.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2022.06.006&domain=pdf

Integration 87 (2022) 194–204

195

the rest of its processing elements including the stochastic tanh FSM.
Another recently introduced method for the MAX & MIN is presented

in [30]. In this architecture, the FSM-based stochastic tanh is replaced
by a shift-register that stores bits from one of its inputs, producing a logic
1 if it has saturated up to its least significant bit. The accuracy of the
architecture’s output is determined by the size of the shift-register,
which is derived with numerical simulations based on the input
sequence length.

The operation of the architecture presented in [32] deviates from the
previous ones; it correlates first its input sequences using a three state
FSM and then uses a single gate to produce either the max or the min.
However, the FSM’s fixed number of states limits the output sequence’s
accuracy, as it allows for only a few uncorrelated bits to be stored.

The common factor that the above architectures share, is the deri-
vation with numerical simulations of the FSM’s number of states, ac-
cording each time to the stochastic input sequence length used. If not
carefully selected, the register realizing the FSM will overflow and may
cause bit-errors in the output sequence, reducing therefore its compu-
tational accuracy. As such, the register’s size plays an important factor in
the design of MAX & MIN architectures, considering that their compu-
tational accuracy may affect other processing blocks.

Motivated by the needs for the FSM’s analytic design as well as the
necessity to improve the latency-accuracy trade-off in SC, in this work
we explore a different approach for the MAX & MIN; we use an accu-
mulator to store the signed bit-differences between the input sequences,
while the architecture is not affected by additional randomizing sources.
The architectures’ properties are demonstrated by modeling them as
Markov Chains (MCs), allowing for: (1) the detailed analysis of their
operating principles, (2) the derivation of the output’s first order sta-
tistics and their proof of proper operation, (3) the analytic calculation of
the probability of overflows and underflows and, (4) the selection of the
register’s size based on the stochastic input sequence length.

The remainder of this work is organized as follows. In Section 2, we
provide with a background on the mathematical properties of stochastic
numbers. In Section 3, we introduce the proposed stochastic MAX ar-
chitecture and its detailed analysis using MCs. Based on the MAX ar-
chitecture, in the same section we also present the proposed MIN
architecture. In Section 4, we present an in-depth analysis of the regis-
ter’s stochastic behavior as well as provide with design guidelines to
select its size based on the output sequence length. In Section 5, we
compare the proposed architectures with existing ones from the SC
literature, in computational accuracy and hardware requirements and
discuss the results. In Section 6, we demonstrate the effectiveness of the
proposed architectures in two image processing tasks; (i) the realization
of a 3 × 3 median filter and its use in image de-noising and (ii) the down
sampling of an image using a 2 × 2 max pooling kernel. Finally, in
Section 7, we conclude our work.

2. Stochastic number representation

The Stochastic Number Generator (SNG) shown in Fig. 1, is the
standard block used to encode a binary number into a stochastic
sequence of logic 1s and 0s [6,10]. Its operation is based upon the
comparison (on each clock cycle) of a k-bit binary word B ∈ [0, 1] with
the value of a k-bit Linear-Feedback Shift Register (LFSR). It is important
to note here that by definition, a LFSR can cycle through R = {1,…,

2k − 1} only once without repetitive values that may introduce corre-
lations. Here, we consider N = 2k-bit stochastic sequences and we as-
sume that a repetition of the LFSR’s initial value, does not degrade the
result of the computations. Finally, to convert the stochastic number
back to its binary form, an up-counter of k-bits is used.

Assuming that the LFSR’s values are uniformly distributed in R , the
generated by the SNG N-bit output sequence, is independent and iden-
tically distributed (IID), i.e. {Xn},n = 1,2,…,N, with n being the time
index (or clock cycle). The stochastic number’s value is a non-negative

number in [0, 1], known as unipolar format in SC, has probability
defined as X≜Pr(Xn = 1) and time-average value

X̃N =
1
N
(X1 + X2 + ⋯ + XN). (1)

To represent negative numbers, known as bipolar format in SC, one
can use the transformation X ↤ 2X − 1, which expands the stochastic
number’s value to range [− 1,1]. As expected, in both formats the length
of the stochastic sequence N plays an important role in the accuracy of
the stochastic number, which is increased at the cost of additional clock
cycles. For the remainder of this work, we use the above stochastic
number properties to explain the principle operation of the proposed
architectures.

3. Stochastic computing MAX architecture

Fig. 2 shows the proposed stochastic MAX architecture where {Xn}

and {Yn} are the stochastic input sequences, assumed to be generated by
SNGs, and {Zn} is the output. Its operation is based on increasing the
m-bit register’s current value Tn by 1 if Xn > Yn and decreasing it by 1 if
Xn < Yn, within the set T R≜{0,1,2,…,M − 1}, starting from T0 = M/2,
where M = 2m is the number values. Essentially, the register counts the
number of signed bit-wise differences between its two inputs, Xn and Yn.
We can express the update of the register’s value as

Tn = max{min{Tn− 1 + Xn − Yn,M − 1}, 0}, (2)

where the min and max functions imply the natural saturating behavior of
the counter since values 0 and M − 1 cannot be exceeded.

To derive the output Zn, we define first the result of the comparison
between the register’s current value Tn and the reference value M/2 as

Jn =

{
0, if Tn < M/2
1, if Tn ≥ M/2, (3)

which, following Fig. 2, implies that

Zn = JnXn + JnYn, (4)

where Jn = 1 − Jn (considering 0 and 1 as Real numbers). Note that Jn =

1 means that input sequence Xn has had more 1s than Yn had, within the
storing range of the register. In this case, the output is Zn = Xn as ex-
pected, whereas if Jn = 0 it is Zn = Yn.

Although the input sequences are stochastic, the architecture’s
operation is deterministic, modeled by Eqs. (2)–(4), and the output Zn is
a function of Tn, Xn and Yn. These imply that the accuracy of {Zn} de-
pends on: (1) the size, m, of the register, and (2) the length, N, of the
input sequences.

3.1. Markov Chain modeling

To investigate the stochastic behavior of the proposed MAX archi-
tecture we model it as the Markov Chain (MC) shown in Fig. 3. The MC
has the M states in the set given by Eq. (5)

S ≜{0, 1,…,M − 2,M − 1}, (5)

Fig. 1. Stochastic Number Generator (SNG) circuit [6].

P.P. Sotiriadis and N. Temenos

Integration 87 (2022) 194–204

196

and its current state is Sn, corresponding to the current value Tn of the
register. The initial state is S0 = M/2.

The transition from state Sn− 1 to state Sn is determined by Sn− 1, Xn
and Yn. Using the probability distributions of inputs Xn and Yn, the
assumption that their sequences are IID, and the operation of the MAX
architecture in Fig. 2, we derive the transition probabilities shown in the
MC model in Fig. 3 as

A ≜ Pr(Xn = 1)Pr(Yn = 0) = X(1 − Y)

B1 ≜ Pr(Xn = 0)Pr(Yn = 0) = (1 − X)(1 − Y)

B2 ≜ Pr(Xn = 1)Pr(Yn = 1) = XY

B ≜ B1 + B2

C ≜ Pr(Xn = 0)Pr(Yn = 1) = (1 − X)Y, (6)

where we have set X = Pr(Xn = 1) and Y = Pr(Yn = 1).
Assuming the state ordering (0, 1,…,M − 1) in S and using Eq. (6),

the M × M transition probability matrix H = [Pr(Sn+1 = sj
⃒
⃒Sn = si)]si ,sj∈S

is written as

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − A A 0 … … 0
C B A 0 … 0
0 C B A … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 C B A
0 … … 0 C 1 − C

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7)

The probability distribution vector of state Sn, is defined as

pT
n ≜

⎡

⎢
⎢
⎢
⎢
⎣

Pr(Sn = 0)
Pr(Sn = 1)
Pr(Sn = 2)

⋮
Pr(Sn = M − 1)

⎤

⎥
⎥
⎥
⎥
⎦
∈ [0, 1]M , (8)

and it is expressed as [33],

pn = p0Hn ∈ [0, 1]M . (9)

Here, p0 is the initial distribution vector representing the starting state of
the register, S0 = M/2. It is

p0 = eM/2+1, (10)

where ei = [0,…,0,1, 0,…,0] ∈ RM is the ith standard vector, i.e., with
all zeros except the ith entry being one.

3.2. First order statistics

We use the MC model in Fig. 3 and Eqs. (6)–(10) to derive the out-
put’s first order statistics. The expected value of the output Zn is
expressed as

E[Zn] = Pr(Zn = 1)
=

∑

s ∈ S

x, y ∈ {0, 1}

Pr(Zn = 1, Sn− 1 = s,Xn = x, Yn = y)

=
∑

s ∈ S

x, y ∈ {0, 1}

Pr(Zn = 1|Sn− 1 = s,Xn = x, Yn = y)

×Pr(Sn− 1 = s,Xn = x, Yn = y).

(11)

Regarding the conditional probability Pr(Zn = 1|Sn− 1 = s,Xn = x,Yn =

y) we note that Zn is a (deterministic) function of Sn− 1, Xn and Yn, as can
be seen in the MC model in Fig. 3. Using the MC model and Eq. (4) we
can distinguish between three possible cases, i.e.:

(1) When Sn− 1 ≤ M/2 − 2, then Zn = 1 if and only Yn = 1,
(2) When Sn− 1 = M/2 − 1, then Zn = 1 if and only at least one of Xn,

Yn is 1,

Fig. 2. Proposed Stochastic MAX architecture where M = 2m. Tn is the register’s current value, updated according to Eq. (2).

Fig. 3. Markov Chain model of the proposed stochastic MAX architecture. Transition probabilities are given by Eq. (6). Jn denotes the result of the comparison
between the register’s current value with the initial one M/2.

P.P. Sotiriadis and N. Temenos

Integration 87 (2022) 194–204

197

(3) When Sn− 1 ≥ M/2, then Zn = 1 if and only Xn = 1.

Therefore we can decompose the summation in Eq. (11) as

E[Zn] =
∑M/2− 2

s=0
Pr(Sn− 1 = s,Yn = 1)

+
∑

(x,y)∕=(0,0)

Pr(Sn− 1 = M/2 − 1,Xn = x, Yn = y)

+
∑M− 1

s=M/2

Pr(Sn− 1 = s,Xn = 1).

(12)

Since Xn, Yn and Sn− 1 are independent random variables, it is

Pr(Sn− 1 = s,Xn = x, Yn = y) = Pr(Sn− 1 = s)Pr(Xn = x)Pr(Yn = y)

simplifying (12) to

E[Zn] = Y
∑M/2− 2

s=0
Pr(Sn− 1 = s)

+(X + Y − XY)Pr(Sn− 1 = M/2 − 1)

+X
∑M− 1

s=M/2

Pr(Sn− 1 = s)

= pn− 1

(
YeT

L + (X + Y − XY)eT
M/2 + XeT

U

)
,

(13)

where eL =
∑M/2− 1

i=1 ei and eU =
∑M

i=M/2+1ei.
Then, the N-bit output sequence time-average,

Z̃N =
1
N
(Z1 + Z2 + ⋯ + ZN), (14)

has the expected value below based on Eq. (13),

E[Z̃N] =
1
N
∑N

n=1
E[Zn]

=
1
N

p0

(
∑N− 1

n=0
Hn

)
(

YeT
L + (X + Y − XY)eT

M/2 + XeT
U

)
.

(15)

In the following subsection we use Eq. (15) to confirm the operation of
the MAX architecture for large N and M values.

3.3. Proof of the MAX operation at the limit

To verify the operation of the proposed MAX architecture we assume

that 0 < X,Y < 1 and X ∕= Y. Then, from Eq. (6) it is 0 < A,B,C < 1, as
well as ρ ∕= 1, where we have defined

ρ≜
A
C
=

X(1 − Y)
Y(1 − X)

. (16)

Moreover, note that ρ > 1 if and only if X > Y.
Observing the MC model in Fig. 3 one can conclude that the MC is

irreducible, as each state sj is accessible, with positive probability, from
every other state si, implying irreducibility for the matrix H as well.
Therefore, from Theorem 8.6.1 in [34] we have that

lim
N→∞

1
N

∑N− 1

n=0
Hn = 1T v, (17)

where the row vector v ∈ RM is the unique left eigenvector of H, vH = v,
corresponding to eigenvalue 1 and being normalized, i.e. v1T = 1, and,
1 = [1, 1,…,1] ∈ RM is the all ones vector. It can be verified directly that
v = λM[1,ρ,ρ2,…,ρM− 1], where

λM≜
1 − ρ

1 − ρM . (18)

Combining Eqs. (15) and (17) and noting that p01T = 1 we get

lim
N→∞

E[Z̃N] = v
(

YeT
L + (X + Y − XY)eT

M/2 + XeT
U

)

= YveT
L + (X + Y − XY)veT

M/2 + XveT
U .

(19)

Using the expressions of v, eL and eU we get

veT
L = λM

(
1 + ρ + ⋯ + ρM/2− 2) =

1 − ρM/2− 1

1 − ρM

veT
M/2 = λMρM/2− 1 =

ρM/2− 1 − ρM/2

1 − ρM

veT
U = λM

(
ρM/2 + ρM/2+1 + ⋯ + ρM− 1) =

ρM/2 − ρM

1 − ρM (20)

directly implying from (20) that limM→∞(limN→∞E[Z̃N]) = Y if ρ < 1 and
limM→∞(limN→∞E[Z̃N]) = X if ρ > 1, and so

lim
M→∞

(

lim
N→∞

E[Z̃N]

)

=

{
X, X > Y
Y, Y > X , (21)

Fig. 4. Numerical simulation of the Mean Squared Error, Eq. (22). The stochastic sequence length is N = 64 and the register size is m = 4-bits. 103 runs are used for
every pair (X,Y).

P.P. Sotiriadis and N. Temenos

Integration 87 (2022) 194–204

198

which proves that the proposed architecture provides the correct ex-
pected result in the limiting case.

3.4. Error calculation

To investigate the distribution of the average output’s error for
different probabilities X,Y ∈ [0,1] of the inputs, we use the Mean
Squared Error (MSE) metric, defined as

Zerror = E
[
(Z̃N − max{X,Y})2

]
. (22)

The numerical calculation of the MSE is done for different X,Y values in
[0, 1] while the simulation is performed for 103 runs for each pair. The
MSE results are shown in Fig. 4, for stochastic sequence length N = 64
and for register size of m = 4-bits. It is observed that the MSE peaks at
the center X = Y = 0.5 and gradually decreases when moving away of it.

3.5. The MIN architecture as a variation of the MAX one

The MIN architecture can be obtained as a variation of the MAX one,
as shown in Fig. 5. The counting of logic 1s is identical to that of the MAX
architecture. The difference between the two architectures is the swap of
the NOT gate between the two AND gates that along with the OR gate,
determine the output. Therefore, the MIN architecture’s analysis is
similar to that of the MAX one’s and follows that in Sections 3.2–4.

4. Selection of the register’s size

From the architecture in Fig. 2 and the register’s update equation,
Eq. (2), it is seen that an overflow or an underflow of the register may
appear when N is relatively large. Consider for example the case when
N≫M and it happens that {Xn} has a large segment of 1s and at the same
time {Yn} has a large segment of 0s. Therefore, to provide guidelines for
the selection of the register’s size, it is important to investigate how the
number of states, M, is related to the probability of overflow or an
underflow and when this leads to erroneous bits in the output sequence
{Zn}.

4.1. Markov chain overflow/underflow model

To investigate overflows/underflows in the MC in Fig. 3, we consider
two possible cases for the transitions of its current state Sn. Assuming
that N→∞ and the initial state is S0 = M/2, if X > Y the MC’s state Sn
will transition from M/2 right-wise up to state M − 1, whereas, if X < Y,
then Sn will transition from M/2 left-wise up to state 0, both with
probability one. Exceeding M − 1 right-wise or 0 left-wise is not possible
and an overflow/underflow is observed which is not captured by the MC
model in Fig. 3.

To model the overflow/underflow occurrence we modify the MC
model in Fig. 3 to that in Fig. 6 having two additional states Ma, Mb,
which are absorbing. Therefore, Sn− 1 = M − 1, Xn = 1 and Yn = 0 will
result in Sk = M for all k ≥ n, capturing the state and indicating that an
overflow has occurred. Similarly, Sn− 1 = 0, Xn = 0 and Yn = 1 will result
in Sk = 0 for all k ≥ n. Both extra states Ma,Mb do not imply an increase
in the register size and are only used for modeling purposes.

To calculate the probability of overflow/underflow, as a function of
M and N, we define the new set of states Ŝ ≜{0,1,…,M − 1,Ma,Mb}

such that |Ŝ | = M+ 2. If we assume a state ordering (0,1,…,M − 1,Ma,

Mb), then the (M + 2) × (M + 2) transition probability matrix Ĥ of the
new MC is

Ĥ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B A 0 … … 0 C 0
C B A 0 … 0 0 0
0 C B A … 0 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮
0 … 0 C B A 0 0
0 … … 0 C B 0 A
0 … … 0 0 0 1 0
0 … … 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (23)

The probability distribution vector of the current state Ŝn of the MC
model in Fig. 6 is

p̂T
n ≜

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pr(Ŝn = 0)
Pr(Ŝn = 1)

⋮
Pr(Ŝn = M − 1)

Pr(Ŝn = Ma)

Pr(Ŝn = Mb)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ [0, 1]M+2 (24)

and it can be expressed as

p̂n = p̂0 Ĥ
n
, (25)

where the initial distribution vector p̂0 is

p̂0 = eM/2+1 ∈ [0, 1]M+2 (26)

and ei = [0,…,0, 1,0,…,0] ∈ RM+2 is the corresponding standard vec-
tor.

The register can underflow in Ma or overflow in Mb. The probability
it has done so at least once, at time index n, is Pr(Ŝn = Ma) and Pr(Ŝn =

Mb), respectively, calculated as

[Pr(Ŝn = Ma),Pr(Ŝn = Mb)] = p̂0 Ĥ
n[

eT
M+1, e

T
M+2

]
∈ R1×2. (27)

In Fig. 7, we illustrate an example of the probability to underflow in Ma
or overflow in Mb calculated using Eq. (27). We have selected inputs as
X = Y = 0.5 and parameterized with N = 64 for number of states M = 4,

Fig. 5. Proposed Stochastic MIN architecture. Tn denotes the M = 2m register’s current value and is updated according to Eq. (2).

P.P. Sotiriadis and N. Temenos

Integration 87 (2022) 194–204

199

8,…,32. As one can observe, the probability to underflow is smaller than
the one to overflow since the initial state M/2 is closer to Mb.

4.2. Average number of steps to overflow or underflow

It is reasonable to further investigate the probability of overflows/
underflows as Eq. (27) provides with an estimate of their occurrence. To
this end, one can calculate the expected number of transitions for the
MC’s state to be absorbed in either Ma or Mb. To this end we decompose
the transition probability matrix Ĥ (canonical form [33,35]) as

(28)

where H̃ ∈ [0, 1]M×M, R ∈ [0,1]M×2, I2 ∈ [0,1]2×2 and 02,M is the 2× M
zero matrix. Using H̃ from Eq. (28), we define the fundamental matrix of
the absorbing MC in Fig. 6 as

F = (IM − H̃)
− 1

∈ RM×M , (29)

and thus, starting from S0 = M/2 in our case, the expected number of
transitions before the absorption is calculated as

N* = p0F1, (30)

where 1 is the column vector of M ones and p0 is given by Eq. (10). N* is
used to provide guidelines for the register’s size selection in the
following subsection.

4.3. Error due to overflow/underflow and register size selection

Overflows/underflows in the architecture in Fig. 2 do not necessarily
imply that {Zn} will contain bit-errors. For instance, in the case of X = 1
and Y = 0, it is expected that Tn is increased linearly and overflow in a

few transitions. Yet, the output’s mean value is calculated correctly.
To further analyze when errors occur due to overflows/underflows

we can consider the following scenario, which is an edge case for the MC
of Fig. 3. Starting from S0 = M/2, a monotonic transition up to state M −

1 happens in M/2 − 1 transitions without overflowing. Now, if A hap-
pens, the next state is M − 1 and the first overflow occurs in a total of M/

2 transitions (or clock cycles). The overflow appears as an error in the
output when the initial state M/2 is revisited in a minimum of M/2 − 1
transitions. Therefore M is the minimum number of transitions possibly
leading to an erroneous bit at the output. OR stating it reversely, as long
as N ≤ M − 1 there are no errors due to overflow/underflow. The above
are captured in the example of Fig. 8 for M = 8 states.

In some cases it is difficult to satisfy N ≤ M − 1 as N may take large
values when accurate calculations are required. Allowing some over-
flows/underflows, possibly implying output errors, may significantly
reduce M = 2m. To this end we use N* in Eq. (30) as a guideline to select
M, noting that N* = N*(X,Y,M) is a function of X,Y and the numbers of
states M. Then, the register’s size can be selected as

m̂ = min

{

m ∈ N

⃒
⃒
⃒
⃒
⃒

min
(x,y)∈[0,1]2

N*(x, y,M) ≥ δN

}

, (31)

where we choose δ = 1, but it can take any positive real. In Table 1 the
values of m̂ are presented for typical stochastic sequence lengths N.

5. Comparison of the proposed architectures with existing ones
in the Stochastic Computing literature

In this section we compare the proposed stochastic MAX and MIN
architectures with existing ones selected from the SC literature, in both
computational accuracy and hardware resources. With respect to the
computational accuracy we use the MSE as our performance metric. It is
calculated numerically in a grid of pairs (X,Y), where for each pair we
performed 103 runs with IID sequences. Then, we averaged the MSE
values of all points in each architecture and the procedure was repeated
for typical stochastic sequence lengths N = 2k, for k = 4,…,10. We note
the following: (1) for all comparisons we have assumed that the sto-
chastic numbers are in unipolar format; (2) for all architectures we
selected for each N the register size m that results in the highest
computational accuracy possible and we provide it in Table 2; and (3)
we assumed that the up & down counting in all MAX/MIN architectures
is done using binary (ripple) counters able to count up to M = 2m states,
where m is the register’s size. The MSE results are graphically presented
in Fig. 9.

The proposed as well as the rest architectures considered, were
described in Verilog HDL using Xilinx’s Vivado Design suite, so as to
verify their proper operation. Then, the designs were synthesized using
the Synopsys Design Compiler with the FreePDK CMOS library at
45 nm [36]. In Table 3 we provide the following estimates: (1) the total
area in μm2; (2) the average power consumption for the max operating
frequency in mW; (3) the delay in ns; and (4) the energy = average
power × delay in pJ. The energy consumption for N cycles is demon-
strated in Fig. 10.

The max architectures [21,30–32] including the proposed one can

Fig. 6. Markov Chain overflow/underflow model of the proposed stochastic MAX architecture. Transition probabilities are given by (6). Absorbing states Ma and Mb
represent underflow and overflow respectively.

Fig. 7. Probability of overflow/underflow calculated using Eq. (27) for a
number of register’s states M = 4,8,…,32, input sequence length N = 64, X =

Y = 0.5 and starting state S0 = M/2.

P.P. Sotiriadis and N. Temenos

Integration 87 (2022) 194–204

200

output the MIN without additional hardware resources (only with
modification). As such, the presented accuracy results in Fig. 9 and the
hardware resources in Table 3 for the MAX architectures apply to the
MIN ones as well.

5.1. Comparison with [21]

The inputs {Xn}, {Yn} in this architecture, are fed to a MUX, which
uses a SNG to generate its select signal. The MUX’s output is the input to
a stochastic tanh function implemented as a saturating FSM of 2m states.
The architecture’s output is determined by a second MUX, which out-
puts either Xn or Yn, according to the tanh FSM’s current output value.

According to Fig. 9, the proposed MAX results in better computa-
tional accuracy and also occupies less resources according to Table 3,
which is due to the SNG used in [21]. Considering the register’s size, in
the proposed MAX architecture it is derived according to the analysis
shown in Section 4, whereas in the architecture in [21] numerical
simulations are required.

5.2. Comparison with [31]

To improve on the hardware resources from [21] and avoid the SNG,
this architecture uses an XOR gate between its two inputs {Xn}, {Yn},
which operates as an enable signal to count Xn using a tanh-based FSM.
Similar to [21], the counting is based on a saturating tanh FSM of 2m

states, while the FSM’s output is used as a select signal in a MUX that
determines if Xn or Yn is the current output.

Compared to [31], the proposed MAX results in better computational
performance according to Fig. 9. In terms of hardware resources, the
proposed MAX occupies slightly more area when the same register size is
used, but, has less energy and power consumption; although it is ex-
pected that higher area will result in higher power and energy con-
sumption, in fact, the synthesis tool optimizes further the design’s
mapping using high area, power and mapping effort. Therefore, even if
one counts the gates used between the two architectures, the theoretical
result will not reflect the one obtained from the synthesis tool. More-
over, the advantage of the proposed MAX architecture over the one in
[31], is the design guidelines for the register’s size selection according to
N, which eliminates the simulation time completely.

5.3. Comparison with [30]

Inspired by [31], the architecture in [30] uses a linear FSM instead of
a binary one, i.e. a shift register of m-bits. Preserving the enable oper-
ation from the XOR gate, the shift register performs a right shift of the
most significant bit (MSB) when Xn = 1, and a left shift otherwise. The
FSM’s output is the register’s least significant bit (LSB), which is 1 if it
has saturated up to the LSB. The architecture’s output is determined by a
MUX along with additional logic gates and selects either the FSM’s
output or Yn.

From Fig. 9, the proposed architecture results in better accuracy, but,
the architecture in [30] is more hardware-efficient according to Table 3,
which is due to the shift-register used over the binary one. However, it is
expected that if the shift-register’s size is not chosen carefully based on
the sequence length N, it will directly affect the output’s accuracy; when
the number of the FSM’s states are reduced, it will result in reduced
computational accuracy and this is shown in [30]. We note that the shift
register size values shown in Table 2 are taken from [30].

Fig. 8. Example of an error due to overflow for M = 8 states. Blue arrow indicates the overflow and red the erroneous bit.

Table 1
Register size m̂̂ -bit satisfying N* ≥ N.

Sequence length N-bits 16 32 64 128 256 512 1024

Register size m̂̂ -bits 2 3 3 4 5 5 6

Fig. 9. Accuracy comparison in MSE of stochastic MAX architectures for typical sequence lengths N. For each N, their register sizes are selected to result in the
highest MSE and are cited in Table 2.

P.P. Sotiriadis and N. Temenos

Integration 87 (2022) 194–204

201

5.4. Comparison with [32]

The operation of this architecture is based upon the correlation of its
two input sequences {Xn}, {Yn} using a 3-state FSM that forces the
overlap of their logic 1s. The FSM is then followed by an OR gate (or
AND) to output the MAX (or the MIN). From Fig. 9, it can be seen that
the proposed MAX results in better accuracy, regardless of the stochastic
sequence length N, when a 3-state FSM is used. To further investigate the
impact of the FSM’s number of states in accuracy, we increased their
total number from 3 to 5. One can observe that the accuracy is increased
for sequences with N ≥ 128-bit length when compared to the 3-state
FSM, but, it is lower than that of the proposed MAX architecture. In
terms of hardware resources, the proposed MAX achieves similar per-
formance with register sizes m = 2,3-bits, while for more than 4-bits, the
MAX in [32] is slightly better. However, one should not neglect the fact
that to achieve the same accuracy as the proposed one, the MAX in [32]
requires more computational cycles N, which reflects on the total energy
consumed.

5.5. Comparison with [37]

In the architecture in [37], the procedure to store the differences
between the inputs follows that of the proposed MAX. However, in the
proposed work the current value of the register’s state is compared with
M/2 instead of 0 in [37]. As such, the overflow/underflow modeling is
improved and hence the understanding of the errors due to overflows.
According to Fig. 9 it can be seen that the MSE has the same order of
magnitude. However, with respect to the hardware resources, the pro-
posed MAX requires slightly less area when the same register size is
used.

6. Application of the proposed MAX and MIN architectures in
image processing

In this section we demonstrate the efficacy of the proposed stochastic
MAX and MIN architectures in standard image processing tasks. To
proceed with the experiments, we note the following; (1) The accuracy
of computations is derived with simulations using MATLAB; and (2) All

Fig. 10. Energy comparison in pJ of stochastic MAX architectures for typical sequence lengths N.

Table 2
Register sizes resulting in the highest MSE based on N.

Table 3
Comparison of hardware resources in area (μm2), critical path (ns), power (mW)

and energy (pJ) consumption.

Register
m-(bit)

Area
(μm2)

Power
(mW)

Critical
path
(ns)

Energy
(pJ)

Proposed m = 2 48.33 0.044 1.5 0.066
m = 3 73.69 0.063 0.094
m = 4 92.31 0.074 0.111
m = 5 106.55 0.081 0.121
m = 6 117.44 0.093 0.139

[21]
MUX LFSR size k

m = 2,k = 4 109.81 0.083 1.6 0.133
m = 2,k = 5 131.87 0.092 0.147
m = 3,k = 6 176.92 0.133 0.213
m = 3,k = 7 199.45 0.142 0.227
m = 3,k = 8 236.32 0.161 0.257
m = 4,k = 9 291.90 0.184 0.295
m = 5,k = 10 311.61 0.193 0.309

[31] m = 2 48.01 0.052 1.5 0.078
m = 3 61.47 0.076 0.114
m = 4 104.97 0.101 0.151

[30]
Shift register

m = 2 46.46 0.021 1.5 0.031
m = 3 57.25 0.034 0.052
m = 4 73.21 0.046 0.069
m = 5 89.16 0.057 0.084
m = 6 105.12 0.068 0.103

[32]
3-State FSM

m = 2 91.49 0.062 1.5 0.094

[37] m = 1 37.54 0.032 1.5 0.048
m = 2 60.86 0.049 0.074
m = 3 88.69 0.063 0.095
m = 4 106.24 0.077 0.116
m = 5 119.21 0.088 0.130

P.P. Sotiriadis and N. Temenos

Integration 87 (2022) 194–204

202

designs were described using Verilog HDL in Xilinx’s Vivado Design
Suite and then synthesized using the Synopsys Design Compiler with the
Free PDK CMOS library at 45 nm [36].

6.1. Noise reduction

The first image processing task we examine is that of the image
denoising. To execute this task, here we consider a 3 × 3 median filter
realized using the proposed stochastic MAX and MIN architectures and
the filter’s structure is based upon the sorting network presented in [21].

We first select a gray-scale image using 8-bit representation and then
inject salt & pepper noise, with noise density of 0.05. The pixel values
are afterwards normalized from range [0, 255] to range [0,1] in order to
be processed in the SC domain. To investigate the computational accu-
racy we consider typical stochastic sequence lengths N = 2k, with k = 5,
…,10 and calculate the Peak Signal-to-Noise Ratio (PSNR) in dB and the
Structural Similarity Index Measure (SSIM). The first metric, the PSNR,
measures the absolute accuracy of computations, whereas the second
one, the SSIM, measures the perceived quality of an image with values
[0, 1] (higher value means better quality).

In Table 4 the calculated PSNR and SSIM results for typical values of
N are shown. Moreover, in Fig. 11 for N = 28-bit sequences and a reg-
ister size of m = 3-bits, the denoising with the 3 × 3 median filter using
the proposed stochastic MAX and MIN is shown, compared to the
computation using MATLAB. As one can observe, both the PSNR and the
SSIM with values 31.87 and 0.90 respectively, demonstrate the
increased computational efficiency of the proposed MAX & MIN
architectures.

In Table 5, we present the hardware resources required to realize the
3 × 3 median filter using the proposed MAX & MIN architectures and the
standard binary method, where we cite two different implementations.
In the first one, we have not included the hardware resources for the
generation of the input sequences as we want for our implementation to
be flexible based on the designer’s choice of inputs (pseudorandom,
random etc.). In the second one, we have included the hardware re-
sources of an optimized SNG based on the sharing scheme in [26]. We
note that we relaxed the register size requirements to m = 3-bits in the
proposed MAX/MIN architectures for this specific task as our experi-
ments showed that the accuracy of computations is not degraded.

From the results shown in Table 5, the advantage of the proposed
method is the occupied area, which is reduced by approximately 40%/

28% with/without SNGs when compared to the binary one. Moreover,
with respect to the energy efficiency, it is expected that the stochastic
sequence length N affects it directly; for example for N = 64-bit se-
quences the total energy consumed is 85.76/75.52 pJ with/without
SNGs resulting in moderate values compared to the binary method.

6.2. Down sampling

The second image processing task we examine is that of the down
sampling. It is a standard process used in NNs as it reduces the dimen-
sionality of the input image based on a max pooling kernel, allowing for
the most important features to be preserved. Here, we consider a 2 × 2
max pooling kernel, realized using the proposed stochastic MAX
architecture.

Similar to the denoising task, we first select a grayscale image and
normalize its pixel values to range [0, 1]. Then we select stochastic
sequence lengths N = 2k with k = 5,…,10 and investigate the kernel’s
performance considering the PSNR and SSIM metrics.

In Tables 6 and 7 the accuracy on computations and the required
hardware resources to realize the 2 × 2 max pooling kernel are
respectively cited. It is shown that using more than N = 27-bit sequence
lengths, the downsampling of an image can be achieved accurately. This
is also demonstrated in Fig. 12 for sequence length N = 28-bits and
register size of m = 4-bits, where the max pooling is compared to the
MATLAB’s calculation.

For the reported hardware resources in Table 6, it is shown that the
realization of the 2 × 2 kernel using the proposed stochastic MAX, oc-
cupies smaller area when compared to the binary one, approximately
40% less. This can benefit NN-based designs since (1) multiple copies of
the kernel are required and (2) they have to operate in parallel.

7. Conclusion

In this work Stochastic Computing MAX & MIN architectures were
presented. Their stochastic operation was modeled analytically using
Markov Chains, which allowed for an in-depth description of their sta-
tistical properties and the verification of their proper operation. The
Markov Chain overflow/underflow analysis allowed to model the

Fig. 11. Denoising using a 3 × 3 median filter. From left to right: (I) MATLAB’s 8-bit noisy image with salt & pepper noise density 0.05, (II) MATLAB’s median
filtered image, (III) Proposed stochastic median filter with sequence length N = 256 and register size m = 3-bits.

Table 4
Computational accuracy in PSNR and SSIM of the realized 3 × 3 median filter
using the proposed MAX and MIN architectures.

N = 2k 25 26 27 28 29 210

PSNR (dB) 24.85 27.33 29.72 31.87 33.66 34.91
SSIM 0.59 0.73 0.83 0.90 0.94 0.96

Table 5
Hardware resources for the implementation of a 3 × 3 median filter using the
proposed MAX & MIN architectures in area (μm2), critical path (ns), power (mW)

and energy (pJ).

Area (μm2) Power (mW) Critical Path (ns) Energy (pJ)

Proposed 1,539 0.59 2.0 1.18
Proposed w/ SNG 1,812 0.67 2.0 1.34
Binary 8-bit 2,520 2.295 2.2 5.05

P.P. Sotiriadis and N. Temenos

Integration 87 (2022) 194–204

203

probability of overflows/underflows and potential errors caused by
them, providing guidelines for the register’s size as well. Comparisons of
the proposed architectures with the Stochastic Computing literature
demonstrated the improvement on the latency-accuracy trade-off.
Finally, the two image processing tasks demonstrated their efficiency in
area occupation and computational accuracy.

CRediT authorship contribution statement

Paul P. Sotiriadis: Conceptualization, Methodology, Validation,
Formal Analysis, Supervision, Writing – review & editing. Nikos
Temenos: Methodology, Software, Validation, Formal Analysis, Visu-
alization, Investigation, Writing – original draft.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

The research work was supported by the Hellenic Foundation for
Research and Innovation, Greece (HFRI) under the HFRI PhD Fellowship
grant (Fellowship Number:1216).

References

[1] T. Araujo, M.B. Cardoso, E.G. Nepomuceno, C.H. Llanos, J. Arias-Garcia, A new
floating-point adder FPGA-based implementation using RN-coding of numbers,
Comput. Electr. Eng. 90 (2021), 106947.

[2] Y. Mounica, K.N. Kumar, S. Veeramachaneni, N. Mahammad, Energy efficient
signed and unsigned radix 16 booth multiplier design, Comput. Electr. Eng. 90
(2021), 106892.

[3] Y. Liu, S. Liu, Y. Wang, F. Lombardi, J. Han, A survey of stochastic computing
neural networks for machine learning applications, IEEE Trans. Neural Netw.
Learn. Syst. 32 (7) (2021) 2809–2824.

[4] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, W.J. Gross, VLSI
implementation of deep neural network using integral stochastic computing, IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 25 (10) (2017) 2688–2699.

[5] P. Zakian, R.N. Asli, An efficient design of low-power and high-speed approximate
compressor in FinFET technology, Comput. Electr. Eng. 86 (2020), 106651.

[6] A. Alaghi, W. Qian, J.P. Hayes, The promise and challenge of stochastic computing,
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37 (8) (2018) 1515–1531.

[7] N. Temenos, P.P. Sotiriadis, Nonscaling adders and subtracters for stochastic
computing using Markov chains, IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
29 (9) (2021) 1612–1623.

[8] Y. Liu, L. Liu, F. Lombardi, J. Han, An energy-efficient and noise-tolerant recurrent
neural network using stochastic computing, IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 27 (9) (2019) 2213–2221.

[9] W.J. Gross, V.C. Gaudet, Stochastic Computing: Techniques and Applications,
Springer, International Publishing, Springer Nature Switzerland AG, 2019.

[10] B.R. Gaines, Stochastic Computing Systems, Springer, Boston, MA, 1967.
[11] W. Qian, M.D. Riedel, H. Zhou, J. Bruck, Transforming probabilities with

combinational logic, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30 (9)
(2011) 1279–1292.

[12] M.H. Najafi, D. Jenson, D.J. Lilja, M.D. Riedel, Performing stochastic computation
deterministically, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27 (12) (2019)
2925–2938.

[13] Z. Lin, G. Xie, W. Xu, J. Han, Y. Zhang, Accelerating Stochastic Computing Using
Deterministic Halton Sequences, IEEE Trans. Circuits Syst. II 68 (10) 3351–3355.

[14] M. Yang, B. Li, D.J. Lilja, B. Yuan, W. Qian, Towards Theoretical Cost Limit of
Stochastic Number Generators for Stochastic Computing, in: IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), Hong Kong, China, 2018.

[15] A. Morro, V. Canals, A. Oliver, M.L. Alomar, F. Galán-Prado, P.J. Ballester, J.
L. Rosselló, A stochastic spiking neural network for virtual screening, IEEE Trans.
Neural Netw. Learn. Syst. 29 (4) (2018) 1371–1375.

[16] B.D. Brown, H.C. Card, Stochastic neural computation I: Computational elements,
IEEE Trans. Comput. 50 (9) (2002) 891–905.

[17] B.D. Brown, H.C. Card, Stochastic neural computation II: Soft competitive learning,
IEEE Trans. Comput. 50 (9) (2002) 906–920.

[18] S. Liu, H. Jiang, L. Liu, J. Han, Gradient descent using stochastic circuits for
efficient training of learning machines, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 37 (11) (2018) 2530–2541.

[19] V.T. Lee, A. Alaghi, J.P. Hayes, V. Sathe, L. Ceze, Energy-efficient hybrid
stochastic-binary neural networks for near-sensor computing, in: ACM Proceedings
of the Conference on Design, Automation & Test in Europe, Laussane, Switzerland,
2017.

[20] P. Li, D.J. Lilja, Using Stochastic Computing to Implement Digital Image Processing
Algorithms, in: IEEE 29th International Conference on Computer Design (ICCD),
Amherst, MA, USA, 2011.

[21] P. Li, D.J. Lilja, W. Qian, K. Bazargan, M.D. Riedel, Computation on stochastic bit
streams digital image processing case studies, IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 2 (3) (2014) 449–462.

[22] A. Alaghi, C. Li, J.P. Hayes, Stochastic circuits for real-time image-processing
applications, in: IEEE 50th ACM/EDAC/IEEE Design Automation Conference
(DAC), Austin, TX, USA, 2013.

[23] Y. Liu, K.K. Parhi, Architectures for recursive digital filters using stochastic
computing, IEEE Trans. Signal Process. 64 (14) (2016) 3705–3718.

[24] N. Saraf, K. Bazargan, D.J. Lilja, M.D. Riedel, IIR filters using stochastic arithmetic,
in: IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE),
Dresden, Germany, 2014.

[25] A. Vlachos, N. Temenos, P.P. Sotiriadis, Exploring the Effectiveness of Sigma-Delta
Modulators in Stochastic Computing-Based FIR Filtering, in: IEEE 10th
International Conference on Modern Circuits and Systems Technologies
(MOCAST), Thessaloniki, Greece, 2021.

[26] H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, T. Inoue, Compact and accurate digital
filters based on stochastic computing, IEEE Trans. Emerg. Top. Comput. 7 (1)
(2019) 31–43.

[27] A. Alaghi, J.P. Hayes, STRAUSS: Spectral transform use in stochastic circuit
synthesis, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 35 (11) (2015).

[28] S. Liu, W.J. Gross, J. Han, Introduction to dynamic stochastic computing, IEEE
Circuits Syst. Mag. 20 (3) (2020) 19–33.

Fig. 12. Down sampling using a 2 × 2 max-pooling kernel. Left: MATLAB’s
max pooling computation for 8-bit pixel representation, Right: max pooling
kernel realized using the proposed stochastic MAX with sequence length N = 28

and register size m = 4-bits.

Table 6
Computational accuracy in PSNR and SSIM of the realized 2 × 2 Max pooling
kernel using the proposed MAX architecture.

N = 2k 25 26 27 28 29 210

PSNR (dB) 20.09 23.14 26.31 29.58 32.94 36.52
SSIM 0.58 0.72 0.82 0.90 0.94 0.97

Table 7
Hardware resources for the implementation of a 2 × 2 Max pooling kernel using
the proposed MAX architecture in area (μm2), critical path (ns), power (mW) and
energy (pJ).

Area (μm2) Power (mW) Critical Path (ns) Energy (pJ)

Proposed 250.61 0.084 2.0 0.17
Binary 8-bit 432.71 0.058 2.2 0.12

P.P. Sotiriadis and N. Temenos

http://refhub.elsevier.com/S0167-9260(22)00073-6/sb1
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb1
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb1
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb2
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb2
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb2
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb3
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb3
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb3
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb4
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb4
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb4
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb5
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb5
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb6
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb6
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb7
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb7
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb7
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb8
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb8
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb8
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb9
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb9
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb10
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb11
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb11
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb11
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb12
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb12
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb12
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb15
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb15
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb15
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb16
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb16
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb17
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb17
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb18
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb18
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb18
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb21
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb21
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb21
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb23
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb23
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb26
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb26
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb26
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb27
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb27
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb28
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb28

Integration 87 (2022) 194–204

204

[29] S.S. Tehrani, W.J. Gross, S. Mannor, Stochastic decoding of LDPC codes, IEEE
Commun. Lett. 10 (10) (2006) 716–718.

[30] M. Lunglmayr, D. Wiesinger, W. Haselmayr, Design and analysis of efficient
maximum/minimum circuits for stochastic computing, IEEE Trans. Comput. 69 (3)
(2020).

[31] J. Yu, K. Kim, J. Lee, K. Choi, Accurate and Efficient Stochastic Computing
Hardware for Convolutional Neural Networks, in: IEEE 35th International
Conference on Computer Design, Boston, MA, USA, 2017.

[32] V.T. Lee, A. Alaghi, L. Ceze, Correlation manipulating circuits for stochastic
computing, in: IEEE Design, Automation & Test in Europe Conference & Exhibition
(DATE), Dresden, Germany, 2018.

[33] C.M. Grinstead, J.L. Snell, Introduction to Probability, second ed., American
Mathematical Society, 1997.

[34] R.A. Horn, C.R. Johnson, Matrix Analysis, first ed., Cambridge University Press,
1990.

[35] C.D. Meyer, Matrix Analysis and Applied Linear Algebra, first ed., Society for
Industrial and Applied Mathematics, 2000.

[36] J.E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W.R. Davis, P.D. Franzon,
M. Bucher, S. Basavarajaiah, J. Oh, R. Jenkal, FreePDK: An Open-Source Variation-
Aware Design Kit, in: IEEE International Conference on Microelectronic Systems
Education, San Diego, CA, USA, 2007.

[37] N. Temenos, P.P. Sotiriadis, Stochastic computing max & min architectures using
Markov chains: Design, analysis, and implementation, IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 29 (11) (2021) 1813–1823.

P.P. Sotiriadis and N. Temenos

http://refhub.elsevier.com/S0167-9260(22)00073-6/sb29
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb29
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb30
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb30
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb30
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb33
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb33
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb34
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb34
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb35
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb35
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb37
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb37
http://refhub.elsevier.com/S0167-9260(22)00073-6/sb37

	Compact MAX and MIN Stochastic Computing architectures
	1 Introduction
	2 Stochastic number representation
	3 Stochastic computing MAX architecture
	3.1 Markov Chain modeling
	3.2 First order statistics
	3.3 Proof of the MAX operation at the limit
	3.4 Error calculation
	3.5 The MIN architecture as a variation of the MAX one

	4 Selection of the register’s size
	4.1 Markov chain overflow/underflow model
	4.2 Average number of steps to overflow or underflow
	4.3 Error due to overflow/underflow and register size selection

	5 Comparison of the proposed architectures with existing ones in the Stochastic Computing literature
	5.1 Comparison with [21]
	5.2 Comparison with [31]
	5.3 Comparison with [30]
	5.4 Comparison with [32]
	5.5 Comparison with [37]

	6 Application of the proposed MAX and MIN architectures in image processing
	6.1 Noise reduction
	6.2 Down sampling

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References

