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A B S T R A C T   

In this work we present Stochastic Computing MAX and MIN architectures. Their operation relies on an accu
mulator to store the signed-bit differences between their two stochastic input sequences without additional 
randomization. This counting process makes their operation deterministic, resulting in an improved latency- 
accuracy trade-off when compared to existing Stochastic Computing MAX and MIN architectures. Modeling 
the architectures as Markov Chains allows for an in-depth analysis of their stochastic operation, derivation of 
their statistical properties and proof of their correct operation. An overflow/underflow Markov Chain model 
allows for the analytic calculation of the register size they use, providing guidelines for its selection based on 
accuracy requirements. The performance of the proposed architectures is compared to those of existing ones in 
the Stochastic Computing literature in computational accuracy and hardware resources using MATLAB and 
Synopsys Tools. Their effectiveness is demonstrated in two standard Digital Image Processing tasks; image 
denoising with a 3 × 3 median filter and dimensionality reduction of an image with a 2 × 2 max pooling kernel.   

1. Introduction 

Efficient realization of digital systems in Integrated Circuits (ICs) and 
Field Programmable Gate Arrays (FPGAs) is of primary interest due to 
the accelerated growth of emerging applications [1–4]. Standard Digital 
Signal Processing (DSP) cores are often stressed by the hardware- 
demanding binary computing methods, especially when parallelization 
is necessary [3,5–7]. To this end, research has shifted towards uncon
ventional computing paradigms to overcome the binary computing’s 
design constraints. 

Stochastic Computing (SC) falls within the category of unconven
tional computing techniques and is proven to be an effective approach 
[3,6,8,9]. Deviating from the standard binary arithmetic representations 
and processing, SC encodes numbers and signals probabilistically in the 
form of stochastic sequences [10]. Therefore, its single-bit processing 
allows for the realization of fundamental arithmetic operations as well 
as highly-complex functions using only a few standard logic cells 
[6,9,11,12]. Moreover, SC is inherently tolerant to soft-errors [6,10,13]. 

One of SC’s main challenges is the latency to accuracy trade-off 
[8,14]. Given its bit-processing, increasing the computational cycles 
results in increased accuracy of the processed sequences, at the cost, 
however, of energy consumption [12]. Therefore, the increased 
computational accuracy combined with low-latency is of primary design 
concern in SC. 

SC’s advantages favor applications with massive parallelism needs. 
Neural Networks (NNs) [3,4,8,15–19] and Digital Image Processing 
[20–22] are two of the many fields in which SC is successful, others 
being soft-filtering & polynomial solving [23–28], error-correcting 
codes [9,29], etc. With emphasis in NNs and Image Processing tasks, 
necessary part of their processing cores includes non-linear functions, 
which can be realized effectively in SC as stochastic Finite State Ma
chines (FSMs). They are known to realize widely used functions such as 
the tanh, the exponential, the linear-gain, the MAX & MIN and others 
[16,20,21,30]. Among them, the MAX & MIN is the most popular one 
[3], due to its importance in MAX pooling operations and in image 
filtering kernels, such as the median. 

Several MAX & MIN architectures have been investigated within the 
context of SC [21,30–32]. The core of the approach in [21] is multi
plexers (MUXs) and the stochastic tanh function, implemented as a FSM. 
The selection of the FSM’s number of states is of critical importance as it 
is one of the two factors determining the output accuracy, the other 
being the sequence length. In [21], the FSM’s number of states resulting 
in the highest computational accuracy are derived with numerical 
simulations. Furthermore, one MUX requires a binary-to-stochastic 
converter to generate its select signal, which is a hardware taxing 
block, increasing the total area, power & energy consumption. 

To reduce the hardware overhead in [21], the approach in [31], 
replaces the binary-to-stochastic converter with an XOR gate, preserving 
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the rest of its processing elements including the stochastic tanh FSM. 
Another recently introduced method for the MAX & MIN is presented 

in [30]. In this architecture, the FSM-based stochastic tanh is replaced 
by a shift-register that stores bits from one of its inputs, producing a logic 
1 if it has saturated up to its least significant bit. The accuracy of the 
architecture’s output is determined by the size of the shift-register, 
which is derived with numerical simulations based on the input 
sequence length. 

The operation of the architecture presented in [32] deviates from the 
previous ones; it correlates first its input sequences using a three state 
FSM and then uses a single gate to produce either the max or the min. 
However, the FSM’s fixed number of states limits the output sequence’s 
accuracy, as it allows for only a few uncorrelated bits to be stored. 

The common factor that the above architectures share, is the deri
vation with numerical simulations of the FSM’s number of states, ac
cording each time to the stochastic input sequence length used. If not 
carefully selected, the register realizing the FSM will overflow and may 
cause bit-errors in the output sequence, reducing therefore its compu
tational accuracy. As such, the register’s size plays an important factor in 
the design of MAX & MIN architectures, considering that their compu
tational accuracy may affect other processing blocks. 

Motivated by the needs for the FSM’s analytic design as well as the 
necessity to improve the latency-accuracy trade-off in SC, in this work 
we explore a different approach for the MAX & MIN; we use an accu
mulator to store the signed bit-differences between the input sequences, 
while the architecture is not affected by additional randomizing sources. 
The architectures’ properties are demonstrated by modeling them as 
Markov Chains (MCs), allowing for: (1) the detailed analysis of their 
operating principles, (2) the derivation of the output’s first order sta
tistics and their proof of proper operation, (3) the analytic calculation of 
the probability of overflows and underflows and, (4) the selection of the 
register’s size based on the stochastic input sequence length. 

The remainder of this work is organized as follows. In Section 2, we 
provide with a background on the mathematical properties of stochastic 
numbers. In Section 3, we introduce the proposed stochastic MAX ar
chitecture and its detailed analysis using MCs. Based on the MAX ar
chitecture, in the same section we also present the proposed MIN 
architecture. In Section 4, we present an in-depth analysis of the regis
ter’s stochastic behavior as well as provide with design guidelines to 
select its size based on the output sequence length. In Section 5, we 
compare the proposed architectures with existing ones from the SC 
literature, in computational accuracy and hardware requirements and 
discuss the results. In Section 6, we demonstrate the effectiveness of the 
proposed architectures in two image processing tasks; (i) the realization 
of a 3 × 3 median filter and its use in image de-noising and (ii) the down 
sampling of an image using a 2 × 2 max pooling kernel. Finally, in 
Section 7, we conclude our work. 

2. Stochastic number representation 

The Stochastic Number Generator (SNG) shown in Fig. 1, is the 
standard block used to encode a binary number into a stochastic 
sequence of logic 1s and 0s [6,10]. Its operation is based upon the 
comparison (on each clock cycle) of a k-bit binary word B ∈ [0, 1] with 
the value of a k-bit Linear-Feedback Shift Register (LFSR). It is important 
to note here that by definition, a LFSR can cycle through R = {1,…,

2k − 1} only once without repetitive values that may introduce corre
lations. Here, we consider N = 2k-bit stochastic sequences and we as
sume that a repetition of the LFSR’s initial value, does not degrade the 
result of the computations. Finally, to convert the stochastic number 
back to its binary form, an up-counter of k-bits is used. 

Assuming that the LFSR’s values are uniformly distributed in R , the 
generated by the SNG N-bit output sequence, is independent and iden
tically distributed (IID), i.e. {Xn},n = 1,2,…,N, with n being the time 
index (or clock cycle). The stochastic number’s value is a non-negative 

number in [0, 1], known as unipolar format in SC, has probability 
defined as X≜Pr(Xn = 1) and time-average value  

X̃N =
1
N
(X1 + X2 + ⋯ + XN). (1) 

To represent negative numbers, known as bipolar format in SC, one 
can use the transformation X ↤ 2X − 1, which expands the stochastic 
number’s value to range [ − 1,1]. As expected, in both formats the length 
of the stochastic sequence N plays an important role in the accuracy of 
the stochastic number, which is increased at the cost of additional clock 
cycles. For the remainder of this work, we use the above stochastic 
number properties to explain the principle operation of the proposed 
architectures.  

3. Stochastic computing MAX architecture  

Fig. 2 shows the proposed stochastic MAX architecture where {Xn}

and {Yn} are the stochastic input sequences, assumed to be generated by 
SNGs, and {Zn} is the output. Its operation is based on increasing the 
m-bit register’s current value Tn by 1 if Xn > Yn and decreasing it by 1 if 
Xn < Yn, within the set T R≜{0,1,2,…,M − 1}, starting from T0 = M/2, 
where M = 2m is the number values. Essentially, the register counts the 
number of signed bit-wise differences between its two inputs, Xn and Yn. 
We can express the update of the register’s value as  

Tn = max{min{Tn− 1 + Xn − Yn,M − 1}, 0}, (2)  

where the min and max functions imply the natural saturating behavior of 
the counter since values 0 and M − 1 cannot be exceeded. 

To derive the output Zn, we define first the result of the comparison 
between the register’s current value Tn and the reference value M/2 as  

Jn =

{
0, if Tn < M/2
1, if Tn ≥ M/2, (3)  

which, following Fig. 2, implies that  

Zn = JnXn + JnYn, (4)  

where Jn = 1 − Jn (considering 0 and 1 as Real numbers). Note that Jn =

1 means that input sequence Xn has had more 1s than Yn had, within the 
storing range of the register. In this case, the output is Zn = Xn as ex
pected, whereas if Jn = 0 it is Zn = Yn. 

Although the input sequences are stochastic, the architecture’s 
operation is deterministic, modeled by Eqs. (2)–(4), and the output Zn is 
a function of Tn, Xn and Yn. These imply that the accuracy of {Zn} de
pends on: (1) the size, m, of the register, and (2) the length, N, of the 
input sequences. 

3.1. Markov Chain modeling 

To investigate the stochastic behavior of the proposed MAX archi
tecture we model it as the Markov Chain (MC) shown in Fig. 3. The MC 
has the M states in the set given by Eq. (5)  

S ≜{0, 1,…,M − 2,M − 1}, (5)  

Fig. 1. Stochastic Number Generator (SNG) circuit [6].  
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and its current state is Sn, corresponding to the current value Tn of the 
register. The initial state is S0 = M/2. 

The transition from state Sn− 1 to state Sn is determined by Sn− 1, Xn 
and Yn. Using the probability distributions of inputs Xn and Yn, the 
assumption that their sequences are IID, and the operation of the MAX 
architecture in Fig. 2, we derive the transition probabilities shown in the 
MC model in Fig. 3 as  

A ≜ Pr(Xn = 1)Pr(Yn = 0) = X(1 − Y)

B1 ≜ Pr(Xn = 0)Pr(Yn = 0) = (1 − X)(1 − Y)

B2 ≜ Pr(Xn = 1)Pr(Yn = 1) = XY  

B ≜ B1 + B2  

C ≜ Pr(Xn = 0)Pr(Yn = 1) = (1 − X)Y, (6)  

where we have set X = Pr(Xn = 1) and Y = Pr(Yn = 1). 
Assuming the state ordering (0, 1,…,M − 1) in S and using Eq. (6), 

the M × M transition probability matrix H = [Pr(Sn+1 = sj
⃒
⃒Sn = si)]si ,sj∈S 

is written as  

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − A A 0 … … 0
C B A 0 … 0
0 C B A … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 C B A
0 … … 0 C 1 − C

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7)  

The probability distribution vector of state Sn, is defined as  

pT
n ≜

⎡

⎢
⎢
⎢
⎢
⎣

Pr(Sn = 0)
Pr(Sn = 1)
Pr(Sn = 2)

⋮
Pr(Sn = M − 1)

⎤

⎥
⎥
⎥
⎥
⎦
∈ [0, 1]M , (8)  

and it is expressed as [33],  

pn = p0Hn ∈ [0, 1]M . (9)  

Here, p0 is the initial distribution vector representing the starting state of 
the register, S0 = M/2. It is  

p0 = eM/2+1, (10)  

where ei = [0,…,0,1, 0,…,0] ∈ RM is the ith standard vector, i.e., with 
all zeros except the ith entry being one.  

3.2. First order statistics 

We use the MC model in Fig. 3 and Eqs. (6)–(10) to derive the out
put’s first order statistics. The expected value of the output Zn is 
expressed as  

E[Zn] = Pr(Zn = 1)
=

∑

s ∈ S

x, y ∈ {0, 1}

Pr(Zn = 1, Sn− 1 = s,Xn = x, Yn = y)

=
∑

s ∈ S

x, y ∈ {0, 1}

Pr(Zn = 1|Sn− 1 = s,Xn = x, Yn = y)

×Pr(Sn− 1 = s,Xn = x, Yn = y).

(11)  

Regarding the conditional probability Pr(Zn = 1|Sn− 1 = s,Xn = x,Yn =

y) we note that Zn is a (deterministic) function of Sn− 1, Xn and Yn, as can 
be seen in the MC model in Fig. 3. Using the MC model and Eq. (4) we 
can distinguish between three possible cases, i.e.:  

(1) When Sn− 1 ≤ M/2 − 2, then Zn = 1 if and only Yn = 1,  
(2) When Sn− 1 = M/2 − 1, then Zn = 1 if and only at least one of Xn, 

Yn is 1, 

Fig. 2. Proposed Stochastic MAX architecture where M = 2m. Tn is the register’s current value, updated according to Eq. (2).  

Fig. 3. Markov Chain model of the proposed stochastic MAX architecture. Transition probabilities are given by Eq. (6). Jn denotes the result of the comparison 
between the register’s current value with the initial one M/2. 
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(3) When Sn− 1 ≥ M/2, then Zn = 1 if and only Xn = 1. 

Therefore we can decompose the summation in Eq. (11) as  

E[Zn] =
∑M/2− 2

s=0
Pr(Sn− 1 = s,Yn = 1)

+
∑

(x,y)∕=(0,0)

Pr(Sn− 1 = M/2 − 1,Xn = x, Yn = y)

+
∑M− 1

s=M/2

Pr(Sn− 1 = s,Xn = 1).

(12)  

Since Xn, Yn and Sn− 1 are independent random variables, it is  

Pr(Sn− 1 = s,Xn = x, Yn = y) = Pr(Sn− 1 = s)Pr(Xn = x)Pr(Yn = y)

simplifying (12) to  

E[Zn] = Y
∑M/2− 2

s=0
Pr(Sn− 1 = s)

+(X + Y − XY)Pr(Sn− 1 = M/2 − 1)

+X
∑M− 1

s=M/2

Pr(Sn− 1 = s)

= pn− 1

(
YeT

L + (X + Y − XY)eT
M/2 + XeT

U

)
,

(13)  

where eL =
∑M/2− 1

i=1 ei and eU =
∑M

i=M/2+1ei. 
Then, the N-bit output sequence time-average,  

Z̃N =
1
N
(Z1 + Z2 + ⋯ + ZN), (14)  

has the expected value below based on Eq. (13),  

E[Z̃N ] =
1
N
∑N

n=1
E[Zn]

=
1
N

p0

(
∑N− 1

n=0
Hn

)
(

YeT
L + (X + Y − XY)eT

M/2 + XeT
U

)
.

(15)  

In the following subsection we use Eq. (15) to confirm the operation of 
the MAX architecture for large N and M values. 

3.3. Proof of the MAX operation at the limit 

To verify the operation of the proposed MAX architecture we assume 

that 0 < X,Y < 1 and X ∕= Y. Then, from Eq. (6) it is 0 < A,B,C < 1, as 
well as ρ ∕= 1, where we have defined  

ρ≜
A
C
=

X(1 − Y)
Y(1 − X)

. (16)  

Moreover, note that ρ > 1 if and only if X > Y. 
Observing the MC model in Fig. 3 one can conclude that the MC is 

irreducible, as each state sj is accessible, with positive probability, from 
every other state si, implying irreducibility for the matrix H as well. 
Therefore, from Theorem 8.6.1 in [34] we have that  

lim
N→∞

1
N

∑N− 1

n=0
Hn = 1T v, (17)  

where the row vector v ∈ RM is the unique left eigenvector of H, vH = v, 
corresponding to eigenvalue 1 and being normalized, i.e. v1T = 1, and, 
1 = [1, 1,…,1] ∈ RM is the all ones vector. It can be verified directly that 
v = λM[1,ρ,ρ2,…,ρM− 1], where  

λM≜
1 − ρ

1 − ρM . (18)  

Combining Eqs. (15) and (17) and noting that p01T = 1 we get  

lim
N→∞

E[Z̃N ] = v
(

YeT
L + (X + Y − XY)eT

M/2 + XeT
U

)

= YveT
L + (X + Y − XY)veT

M/2 + XveT
U .

(19)  

Using the expressions of v, eL and eU we get  

veT
L = λM

(
1 + ρ + ⋯ + ρM/2− 2) =

1 − ρM/2− 1

1 − ρM  

veT
M/2 = λMρM/2− 1 =

ρM/2− 1 − ρM/2

1 − ρM  

veT
U = λM

(
ρM/2 + ρM/2+1 + ⋯ + ρM− 1) =

ρM/2 − ρM

1 − ρM (20)  

directly implying from (20) that limM→∞(limN→∞E[Z̃N]) = Y if ρ < 1 and 
limM→∞(limN→∞E[Z̃N]) = X if ρ > 1, and so  

lim
M→∞

(

lim
N→∞

E[Z̃N ]

)

=

{
X, X > Y
Y, Y > X , (21) 

Fig. 4. Numerical simulation of the Mean Squared Error, Eq. (22). The stochastic sequence length is N = 64 and the register size is m = 4-bits. 103 runs are used for 
every pair (X,Y). 
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which proves that the proposed architecture provides the correct ex
pected result in the limiting case. 

3.4. Error calculation 

To investigate the distribution of the average output’s error for 
different probabilities X,Y ∈ [0,1] of the inputs, we use the Mean 
Squared Error (MSE) metric, defined as  

Zerror = E
[
(Z̃N − max{X,Y})2

]
. (22)  

The numerical calculation of the MSE is done for different X,Y values in 
[0, 1] while the simulation is performed for 103 runs for each pair. The 
MSE results are shown in Fig. 4, for stochastic sequence length N = 64 
and for register size of m = 4-bits. It is observed that the MSE peaks at 
the center X = Y = 0.5 and gradually decreases when moving away of it. 

3.5. The MIN architecture as a variation of the MAX one 

The MIN architecture can be obtained as a variation of the MAX one, 
as shown in Fig. 5. The counting of logic 1s is identical to that of the MAX 
architecture. The difference between the two architectures is the swap of 
the NOT gate between the two AND gates that along with the OR gate, 
determine the output. Therefore, the MIN architecture’s analysis is 
similar to that of the MAX one’s and follows that in Sections 3.2–4. 

4. Selection of the register’s size 

From the architecture in Fig. 2 and the register’s update equation, 
Eq. (2), it is seen that an overflow or an underflow of the register may 
appear when N is relatively large. Consider for example the case when 
N≫M and it happens that {Xn} has a large segment of 1s and at the same 
time {Yn} has a large segment of 0s. Therefore, to provide guidelines for 
the selection of the register’s size, it is important to investigate how the 
number of states, M, is related to the probability of overflow or an 
underflow and when this leads to erroneous bits in the output sequence 
{Zn}.  

4.1. Markov chain overflow/underflow model 

To investigate overflows/underflows in the MC in Fig. 3, we consider 
two possible cases for the transitions of its current state Sn. Assuming 
that N→∞ and the initial state is S0 = M/2, if X > Y the MC’s state Sn 
will transition from M/2 right-wise up to state M − 1, whereas, if X < Y, 
then Sn will transition from M/2 left-wise up to state 0, both with 
probability one. Exceeding M − 1 right-wise or 0 left-wise is not possible 
and an overflow/underflow is observed which is not captured by the MC 
model in Fig. 3. 

To model the overflow/underflow occurrence we modify the MC 
model in Fig. 3 to that in Fig. 6 having two additional states Ma, Mb, 
which are absorbing. Therefore, Sn− 1 = M − 1, Xn = 1 and Yn = 0 will 
result in Sk = M for all k ≥ n, capturing the state and indicating that an 
overflow has occurred. Similarly, Sn− 1 = 0, Xn = 0 and Yn = 1 will result 
in Sk = 0 for all k ≥ n. Both extra states Ma,Mb do not imply an increase 
in the register size and are only used for modeling purposes. 

To calculate the probability of overflow/underflow, as a function of 
M and N, we define the new set of states Ŝ ≜{0,1,…,M − 1,Ma,Mb}

such that |Ŝ | = M+ 2. If we assume a state ordering (0,1,…,M − 1,Ma,

Mb), then the (M + 2) × (M + 2) transition probability matrix Ĥ of the 
new MC is  

Ĥ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B A 0 … … 0 C 0
C B A 0 … 0 0 0
0 C B A … 0 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮
0 … 0 C B A 0 0
0 … … 0 C B 0 A
0 … … 0 0 0 1 0
0 … … 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (23)  

The probability distribution vector of the current state Ŝn of the MC 
model in Fig. 6 is  

p̂T
n ≜

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pr(Ŝn = 0)
Pr(Ŝn = 1)

⋮
Pr(Ŝn = M − 1)

Pr(Ŝn = Ma)

Pr(Ŝn = Mb)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ [0, 1]M+2 (24)  

and it can be expressed as  

p̂n = p̂0 Ĥ
n
, (25)  

where the initial distribution vector p̂0 is  

p̂0 = eM/2+1 ∈ [0, 1]M+2 (26)  

and ei = [0,…,0, 1,0,…,0] ∈ RM+2 is the corresponding standard vec
tor. 

The register can underflow in Ma or overflow in Mb. The probability 
it has done so at least once, at time index n, is Pr(Ŝn = Ma) and Pr(Ŝn =

Mb), respectively, calculated as  

[Pr(Ŝn = Ma),Pr(Ŝn = Mb)] = p̂0 Ĥ
n[

eT
M+1, e

T
M+2

]
∈ R1×2. (27)  

In Fig. 7, we illustrate an example of the probability to underflow in Ma 
or overflow in Mb calculated using Eq. (27). We have selected inputs as 
X = Y = 0.5 and parameterized with N = 64 for number of states M = 4,

Fig. 5. Proposed Stochastic MIN architecture. Tn denotes the M = 2m register’s current value and is updated according to Eq. (2).  
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8,…,32. As one can observe, the probability to underflow is smaller than 
the one to overflow since the initial state M/2 is closer to Mb.  

4.2. Average number of steps to overflow or underflow 

It is reasonable to further investigate the probability of overflows/ 
underflows as Eq. (27) provides with an estimate of their occurrence. To 
this end, one can calculate the expected number of transitions for the 
MC’s state to be absorbed in either Ma or Mb. To this end we decompose 
the transition probability matrix Ĥ (canonical form [33,35]) as  

(28)  

where H̃ ∈ [0, 1]M×M, R ∈ [0,1]M×2, I2 ∈ [0,1]2×2 and 02,M is the 2× M 
zero matrix. Using H̃ from Eq. (28), we define the fundamental matrix of 
the absorbing MC in Fig. 6 as  

F = (IM − H̃)
− 1

∈ RM×M , (29)  

and thus, starting from S0 = M/2 in our case, the expected number of 
transitions before the absorption is calculated as  

N* = p0F1, (30)  

where 1 is the column vector of M ones and p0 is given by Eq. (10). N* is 
used to provide guidelines for the register’s size selection in the 
following subsection. 

4.3. Error due to overflow/underflow and register size selection 

Overflows/underflows in the architecture in Fig. 2 do not necessarily 
imply that {Zn} will contain bit-errors. For instance, in the case of X = 1 
and Y = 0, it is expected that Tn is increased linearly and overflow in a 

few transitions. Yet, the output’s mean value is calculated correctly. 
To further analyze when errors occur due to overflows/underflows 

we can consider the following scenario, which is an edge case for the MC 
of Fig. 3. Starting from S0 = M/2, a monotonic transition up to state M −

1 happens in M/2 − 1 transitions without overflowing. Now, if A hap
pens, the next state is M − 1 and the first overflow occurs in a total of M/

2 transitions (or clock cycles). The overflow appears as an error in the 
output when the initial state M/2 is revisited in a minimum of M/2 − 1 
transitions. Therefore M is the minimum number of transitions possibly 
leading to an erroneous bit at the output. OR stating it reversely, as long 
as N ≤ M − 1 there are no errors due to overflow/underflow. The above 
are captured in the example of Fig. 8 for M = 8 states. 

In some cases it is difficult to satisfy N ≤ M − 1 as N may take large 
values when accurate calculations are required. Allowing some over
flows/underflows, possibly implying output errors, may significantly 
reduce M = 2m. To this end we use N* in Eq. (30) as a guideline to select 
M, noting that N* = N*(X,Y,M) is a function of X,Y and the numbers of 
states M. Then, the register’s size can be selected as  

m̂ = min

{

m ∈ N

⃒
⃒
⃒
⃒
⃒

min
(x,y)∈[0,1]2

N*(x, y,M) ≥ δN

}

, (31)  

where we choose δ = 1, but it can take any positive real. In Table 1 the 
values of m̂ are presented for typical stochastic sequence lengths N.  

5. Comparison of the proposed architectures with existing ones 
in the Stochastic Computing literature 

In this section we compare the proposed stochastic MAX and MIN 
architectures with existing ones selected from the SC literature, in both 
computational accuracy and hardware resources. With respect to the 
computational accuracy we use the MSE as our performance metric. It is 
calculated numerically in a grid of pairs (X,Y), where for each pair we 
performed 103 runs with IID sequences. Then, we averaged the MSE 
values of all points in each architecture and the procedure was repeated 
for typical stochastic sequence lengths N = 2k, for k = 4,…,10. We note 
the following: (1) for all comparisons we have assumed that the sto
chastic numbers are in unipolar format; (2) for all architectures we 
selected for each N the register size m that results in the highest 
computational accuracy possible and we provide it in Table 2; and (3) 
we assumed that the up & down counting in all MAX/MIN architectures 
is done using binary (ripple) counters able to count up to M = 2m states, 
where m is the register’s size. The MSE results are graphically presented 
in Fig. 9. 

The proposed as well as the rest architectures considered, were 
described in Verilog HDL using Xilinx’s Vivado Design suite, so as to 
verify their proper operation. Then, the designs were synthesized using 
the Synopsys Design Compiler with the FreePDK CMOS library at 
45 nm [36]. In Table 3 we provide the following estimates: (1) the total 
area in μm2; (2) the average power consumption for the max operating 
frequency in mW; (3) the delay in ns; and (4) the energy = average 
power × delay in pJ. The energy consumption for N cycles is demon
strated in Fig. 10. 

The max architectures [21,30–32] including the proposed one can 

Fig. 6. Markov Chain overflow/underflow model of the proposed stochastic MAX architecture. Transition probabilities are given by (6). Absorbing states Ma and Mb 
represent underflow and overflow respectively. 

Fig. 7. Probability of overflow/underflow calculated using Eq. (27) for a 
number of register’s states M = 4,8,…,32, input sequence length N = 64, X =

Y = 0.5 and starting state S0 = M/2. 
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output the MIN without additional hardware resources (only with 
modification). As such, the presented accuracy results in Fig. 9 and the 
hardware resources in Table 3 for the MAX architectures apply to the 
MIN ones as well.     

5.1. Comparison with [21] 

The inputs {Xn}, {Yn} in this architecture, are fed to a MUX, which 
uses a SNG to generate its select signal. The MUX’s output is the input to 
a stochastic tanh function implemented as a saturating FSM of 2m states. 
The architecture’s output is determined by a second MUX, which out
puts either Xn or Yn, according to the tanh FSM’s current output value. 

According to Fig. 9, the proposed MAX results in better computa
tional accuracy and also occupies less resources according to Table 3, 
which is due to the SNG used in [21]. Considering the register’s size, in 
the proposed MAX architecture it is derived according to the analysis 
shown in Section 4, whereas in the architecture in [21] numerical 
simulations are required. 

5.2. Comparison with [31] 

To improve on the hardware resources from [21] and avoid the SNG, 
this architecture uses an XOR gate between its two inputs {Xn}, {Yn}, 
which operates as an enable signal to count Xn using a tanh-based FSM. 
Similar to [21], the counting is based on a saturating tanh FSM of 2m 

states, while the FSM’s output is used as a select signal in a MUX that 
determines if Xn or Yn is the current output. 

Compared to [31], the proposed MAX results in better computational 
performance according to Fig. 9. In terms of hardware resources, the 
proposed MAX occupies slightly more area when the same register size is 
used, but, has less energy and power consumption; although it is ex
pected that higher area will result in higher power and energy con
sumption, in fact, the synthesis tool optimizes further the design’s 
mapping using high area, power and mapping effort. Therefore, even if 
one counts the gates used between the two architectures, the theoretical 
result will not reflect the one obtained from the synthesis tool. More
over, the advantage of the proposed MAX architecture over the one in 
[31], is the design guidelines for the register’s size selection according to 
N, which eliminates the simulation time completely. 

5.3. Comparison with [30] 

Inspired by [31], the architecture in [30] uses a linear FSM instead of 
a binary one, i.e. a shift register of m-bits. Preserving the enable oper
ation from the XOR gate, the shift register performs a right shift of the 
most significant bit (MSB) when Xn = 1, and a left shift otherwise. The 
FSM’s output is the register’s least significant bit (LSB), which is 1 if it 
has saturated up to the LSB. The architecture’s output is determined by a 
MUX along with additional logic gates and selects either the FSM’s 
output or Yn. 

From Fig. 9, the proposed architecture results in better accuracy, but, 
the architecture in [30] is more hardware-efficient according to Table 3, 
which is due to the shift-register used over the binary one. However, it is 
expected that if the shift-register’s size is not chosen carefully based on 
the sequence length N, it will directly affect the output’s accuracy; when 
the number of the FSM’s states are reduced, it will result in reduced 
computational accuracy and this is shown in [30]. We note that the shift 
register size values shown in Table 2 are taken from [30]. 

Fig. 8. Example of an error due to overflow for M = 8 states. Blue arrow indicates the overflow and red the erroneous bit.  

Table 1 
Register size m̂̂ -bit satisfying N* ≥ N.  

Sequence length N-bits 16 32 64 128 256 512 1024 

Register size m̂̂ -bits 2 3 3 4 5 5 6  

Fig. 9. Accuracy comparison in MSE of stochastic MAX architectures for typical sequence lengths N. For each N, their register sizes are selected to result in the 
highest MSE and are cited in Table 2. 
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5.4. Comparison with [32] 

The operation of this architecture is based upon the correlation of its 
two input sequences {Xn}, {Yn} using a 3-state FSM that forces the 
overlap of their logic 1s. The FSM is then followed by an OR gate (or 
AND) to output the MAX (or the MIN). From Fig. 9, it can be seen that 
the proposed MAX results in better accuracy, regardless of the stochastic 
sequence length N, when a 3-state FSM is used. To further investigate the 
impact of the FSM’s number of states in accuracy, we increased their 
total number from 3 to 5. One can observe that the accuracy is increased 
for sequences with N ≥ 128-bit length when compared to the 3-state 
FSM, but, it is lower than that of the proposed MAX architecture. In 
terms of hardware resources, the proposed MAX achieves similar per
formance with register sizes m = 2,3-bits, while for more than 4-bits, the 
MAX in [32] is slightly better. However, one should not neglect the fact 
that to achieve the same accuracy as the proposed one, the MAX in [32] 
requires more computational cycles N, which reflects on the total energy 
consumed. 

5.5. Comparison with [37] 

In the architecture in [37], the procedure to store the differences 
between the inputs follows that of the proposed MAX. However, in the 
proposed work the current value of the register’s state is compared with 
M/2 instead of 0 in [37]. As such, the overflow/underflow modeling is 
improved and hence the understanding of the errors due to overflows. 
According to Fig. 9 it can be seen that the MSE has the same order of 
magnitude. However, with respect to the hardware resources, the pro
posed MAX requires slightly less area when the same register size is 
used.  

6. Application of the proposed MAX and MIN architectures in 
image processing 

In this section we demonstrate the efficacy of the proposed stochastic 
MAX and MIN architectures in standard image processing tasks. To 
proceed with the experiments, we note the following; (1) The accuracy 
of computations is derived with simulations using MATLAB; and (2) All 

Fig. 10. Energy comparison in pJ of stochastic MAX architectures for typical sequence lengths N.  

Table 2 
Register sizes resulting in the highest MSE based on N. 

Table 3 
Comparison of hardware resources in area (μm2), critical path (ns), power (mW)

and energy (pJ) consumption.   

Register  
m-(bit) 

Area  
(μm2)

Power  
(mW)

Critical 
path  
(ns)

Energy  
(pJ)

Proposed m = 2 48.33 0.044 1.5 0.066 
m = 3 73.69 0.063 0.094 
m = 4 92.31 0.074 0.111 
m = 5 106.55 0.081 0.121 
m = 6 117.44 0.093 0.139 

[21]  
MUX LFSR size k 

m = 2,k = 4 109.81 0.083 1.6 0.133 
m = 2,k = 5 131.87 0.092 0.147 
m = 3,k = 6 176.92 0.133 0.213 
m = 3,k = 7 199.45 0.142 0.227 
m = 3,k = 8 236.32 0.161 0.257 
m = 4,k = 9 291.90 0.184 0.295 
m = 5,k = 10 311.61 0.193 0.309 

[31] m = 2 48.01 0.052 1.5 0.078 
m = 3 61.47 0.076 0.114 
m = 4 104.97 0.101 0.151 

[30]  
Shift register 

m = 2 46.46 0.021 1.5 0.031 
m = 3 57.25 0.034 0.052 
m = 4 73.21 0.046 0.069 
m = 5 89.16 0.057 0.084 
m = 6 105.12 0.068 0.103 

[32]  
3-State FSM 

m = 2 91.49 0.062 1.5 0.094 

[37] m = 1 37.54 0.032 1.5 0.048 
m = 2 60.86 0.049 0.074 
m = 3 88.69 0.063 0.095 
m = 4 106.24 0.077 0.116 
m = 5 119.21 0.088 0.130  
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designs were described using Verilog HDL in Xilinx’s Vivado Design 
Suite and then synthesized using the Synopsys Design Compiler with the 
Free PDK CMOS library at 45 nm [36]. 

6.1. Noise reduction 

The first image processing task we examine is that of the image 
denoising. To execute this task, here we consider a 3 × 3 median filter 
realized using the proposed stochastic MAX and MIN architectures and 
the filter’s structure is based upon the sorting network presented in [21]. 

We first select a gray-scale image using 8-bit representation and then 
inject salt & pepper noise, with noise density of 0.05. The pixel values 
are afterwards normalized from range [0, 255] to range [0,1] in order to 
be processed in the SC domain. To investigate the computational accu
racy we consider typical stochastic sequence lengths N = 2k, with k = 5,
…,10 and calculate the Peak Signal-to-Noise Ratio (PSNR) in dB and the 
Structural Similarity Index Measure (SSIM). The first metric, the PSNR, 
measures the absolute accuracy of computations, whereas the second 
one, the SSIM, measures the perceived quality of an image with values 
[0, 1] (higher value means better quality). 

In Table 4 the calculated PSNR and SSIM results for typical values of 
N are shown. Moreover, in Fig. 11 for N = 28-bit sequences and a reg
ister size of m = 3-bits, the denoising with the 3 × 3 median filter using 
the proposed stochastic MAX and MIN is shown, compared to the 
computation using MATLAB. As one can observe, both the PSNR and the 
SSIM with values 31.87 and 0.90 respectively, demonstrate the 
increased computational efficiency of the proposed MAX & MIN 
architectures. 

In Table 5, we present the hardware resources required to realize the 
3 × 3 median filter using the proposed MAX & MIN architectures and the 
standard binary method, where we cite two different implementations. 
In the first one, we have not included the hardware resources for the 
generation of the input sequences as we want for our implementation to 
be flexible based on the designer’s choice of inputs (pseudorandom, 
random etc.). In the second one, we have included the hardware re
sources of an optimized SNG based on the sharing scheme in [26]. We 
note that we relaxed the register size requirements to m = 3-bits in the 
proposed MAX/MIN architectures for this specific task as our experi
ments showed that the accuracy of computations is not degraded. 

From the results shown in Table 5, the advantage of the proposed 
method is the occupied area, which is reduced by approximately 40%/

28% with/without SNGs when compared to the binary one. Moreover, 
with respect to the energy efficiency, it is expected that the stochastic 
sequence length N affects it directly; for example for N = 64-bit se
quences the total energy consumed is 85.76/75.52 pJ with/without 
SNGs resulting in moderate values compared to the binary method.   

6.2. Down sampling 

The second image processing task we examine is that of the down 
sampling. It is a standard process used in NNs as it reduces the dimen
sionality of the input image based on a max pooling kernel, allowing for 
the most important features to be preserved. Here, we consider a 2 × 2 
max pooling kernel, realized using the proposed stochastic MAX 
architecture. 

Similar to the denoising task, we first select a grayscale image and 
normalize its pixel values to range [0, 1]. Then we select stochastic 
sequence lengths N = 2k with k = 5,…,10 and investigate the kernel’s 
performance considering the PSNR and SSIM metrics. 

In Tables 6 and 7 the accuracy on computations and the required 
hardware resources to realize the 2 × 2 max pooling kernel are 
respectively cited. It is shown that using more than N = 27-bit sequence 
lengths, the downsampling of an image can be achieved accurately. This 
is also demonstrated in Fig. 12 for sequence length N = 28-bits and 
register size of m = 4-bits, where the max pooling is compared to the 
MATLAB’s calculation. 

For the reported hardware resources in Table 6, it is shown that the 
realization of the 2 × 2 kernel using the proposed stochastic MAX, oc
cupies smaller area when compared to the binary one, approximately 
40% less. This can benefit NN-based designs since (1) multiple copies of 
the kernel are required and (2) they have to operate in parallel.    

7. Conclusion 

In this work Stochastic Computing MAX & MIN architectures were 
presented. Their stochastic operation was modeled analytically using 
Markov Chains, which allowed for an in-depth description of their sta
tistical properties and the verification of their proper operation. The 
Markov Chain overflow/underflow analysis allowed to model the 

Fig. 11. Denoising using a 3 × 3 median filter. From left to right: (I) MATLAB’s 8-bit noisy image with salt & pepper noise density 0.05, (II) MATLAB’s median 
filtered image, (III) Proposed stochastic median filter with sequence length N = 256 and register size m = 3-bits. 

Table 4 
Computational accuracy in PSNR and SSIM of the realized 3 × 3 median filter 
using the proposed MAX and MIN architectures.  

N = 2k 25 26 27 28 29 210 

PSNR (dB) 24.85 27.33 29.72 31.87 33.66 34.91 
SSIM 0.59 0.73 0.83 0.90 0.94 0.96  

Table 5 
Hardware resources for the implementation of a 3 × 3 median filter using the 
proposed MAX & MIN architectures in area (μm2), critical path (ns), power (mW)

and energy (pJ).   

Area (μm2) Power (mW) Critical Path (ns) Energy (pJ)

Proposed 1,539 0.59 2.0 1.18 
Proposed w/ SNG 1,812 0.67 2.0 1.34 
Binary 8-bit 2,520 2.295 2.2 5.05  
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probability of overflows/underflows and potential errors caused by 
them, providing guidelines for the register’s size as well. Comparisons of 
the proposed architectures with the Stochastic Computing literature 
demonstrated the improvement on the latency-accuracy trade-off. 
Finally, the two image processing tasks demonstrated their efficiency in 
area occupation and computational accuracy. 
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Fig. 12. Down sampling using a 2 × 2 max-pooling kernel. Left: MATLAB’s 
max pooling computation for 8-bit pixel representation, Right: max pooling 
kernel realized using the proposed stochastic MAX with sequence length N = 28 

and register size m = 4-bits. 

Table 6 
Computational accuracy in PSNR and SSIM of the realized 2 × 2 Max pooling 
kernel using the proposed MAX architecture.  

N = 2k 25 26 27 28 29 210 

PSNR (dB) 20.09 23.14 26.31 29.58 32.94 36.52 
SSIM 0.58 0.72 0.82 0.90 0.94 0.97  

Table 7 
Hardware resources for the implementation of a 2 × 2 Max pooling kernel using 
the proposed MAX architecture in area (μm2), critical path (ns), power (mW) and 
energy (pJ).   

Area (μm2) Power (mW) Critical Path (ns) Energy (pJ)

Proposed 250.61 0.084 2.0 0.17 
Binary 8-bit 432.71 0.058 2.2 0.12  
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